3.8 Proceedings Paper

Trust Mends Blockchains: Living up to Expectations

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/ICDCS.2019.00136

Keywords

Blockchain; Proof of Work; Bitcoin; Distributed Ledger; PoW is expensive; Proof of Trust; PoW alternative

Ask authors/readers for more resources

At the heart of Blockchains is the trustless leader election mechanism for achieving consensus among pseudo anonymous peers, without the need of oversight from any third party or authority whatsoever. So far, two main mechanisms are being discussed: proof-of-work (PoW) and proof-of-stake (PoS). PoW relies on demonstration of computational power, and comes with the markup of huge energy wastage in return of the stake in cyrpto-currency. PoS tries to address this by relying on owned stake (i.e., amount of crypto-currency) in the system. In both cases, Blockchains are limited to systems with financial basis. This forces non-crypto-currency Blockchain applications to resort to permissioned setting only, effectively centralizing the system. However, non-crypto-currency permisionless blockhains could enable secure and self-governed peer-to-peer structures for numerous emerging application domains, such as education and health, where some trust exists among peers. This creates a new possibility for valuing trust among peers and capitalizing it as the basis (stake) for reaching consensus. In this paper we show that there is a viable way for permisionless non-financial Blockhains to operate in completely decentralized environments and achieve leader election through proof-of-trust (PoT). In our PoT construction, peer trust is extracted from a trust network that emerges in a decentralized manner and is used as a waiver for the effort to be spent for PoW, thus dramatically reducing total energy expenditure of the system. Furthermore, our PoT construction is resilient to the risk of small cartels monopolizing the network (as it happens with the mining-pool phenomena in PoW) and is not vulnerable to sybils. We evluate security guarantees, and perform experimental evaluation of our construction, demonstrating up to 10-fold energy savings compared to PoW without trading off any of the decentralization characteristics, with further guarantees against risks of monopolization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available