3.8 Proceedings Paper

From Requirements to Automated Acceptance Tests of Interactive Apps: An Integrated Model-based Testing Approach

Publisher

SCITEPRESS
DOI: 10.5220/0007679202650272

Keywords

Requirements Specification Language (RSL); Test Case Specification; Model-based Testing (MBT); Test Case Generation; Test Case Execution.

Funding

  1. national funds under FCT [UID/CEC/50021/2019, 02/SAICT/2017/29360]

Ask authors/readers for more resources

Frequently software testing tends to be neglected at the beginning of the projects, only performed on the late stage. However, it is possible to benefit from combining requirement with testing specification activities. On one hand, acceptance tests specification will require less manual effort since they are defined or generated automatically from the requirements specification. On the other hand, the requirements specification itself will end up having higher quality due to the use of a more structured language, reducing typical problems such as ambiguity, inconsistency and incorrectness. This research proposes an approach that promotes the practice of tests specification since the very beginning of projects, and its integration with the requirements specification itself. It is a model-driven approach that contributes to maintain the requirements and tests alignment, namely between requirements, test cases, and low-level automated test scripts. To show the applicability of the approach, two complementary languages are adopted: the ITLingo RSL that is particularly designed to support both requirements and tests specification; and the Robot language, which is a low-level keyword-based language for the specification of test scripts. The approach includes model-to-model transformation techniques, such as test cases into test scripts transformations. In addition, these test scripts are executed by the Robot test automation framework.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available