4.7 Article

Emission of greenhouse gases from waste incineration in Korea

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 196, Issue -, Pages 710-718

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2017.03.071

Keywords

Waste incineration; Emission factor; Greenhouse gases; Carbon dioxide; Nitrous oxide

Funding

  1. National Institute of Environmental Research in Korea [121-051-045]

Ask authors/readers for more resources

Greenhouse gas (GHG) emission factors previously reported from various waste incineration plants have shown significant variations according to country-specific, plant-specific, and operational conditions. The purpose of this study is to estimate GHG emissions and emission factors at nine incineration facilities in Korea by Measuring the GHG concentrations in the flue gas samples. The selected incineration plants had different operation systems (i.e., stoker, fluidized bed, moving grate, rotary kiln, and kiln & stoker), and different nitrogen oxide (NOx) removal systems (i.e., selective catalytic reduction (SCR) and selective non catalytic reduction (SNCR)) to treat municipal solid waste (MSW), commercial solid waste (CSW), and specified waste (SW). The total mean emission factors for A and B facilities for MSW incineration were found to be 134 +/- 17 kg CO2 ton(-1), 88 +/- 36 g CH4 ton(-1), and 69 +/- 16 g N2O ton(-1), while those for CSW incineration were 22.56 g CH4 ton(-1) and 259.76 g N2O ton(-1), and for SW incineration emission factors were 2959 kg CO2 ton(-1), 43.44 g CH4 tons and 401.21 g N2O ton(-1), respectively. Total emissions calculated using annual incineration for MSW were 3587 ton CO2-eq yr(-1) for A facility and 11,082 ton CO2-eq yr(-1) for B facility, while those of IPCC default values were 13,167 ton CO2-eq yr(-1) for A facility and 32,916 ton CO2-eq yr(-1), indicating that the emissions of IPCC default values were estimated higher than those of the plant-specific emission factors. The emission of CSW for C facility was 1403 ton CO2-eq yr(-1), while those of SW for D to I facilities was 28,830 ton CO2-eq yr(-1). The sensitivity analysis using a Monte Carlo simulation for GHG emission factors in MSW showed that the GHG concentrations have a greater impact than the incineration amount and flow rate of flue gas. For MSW incineration plants using the same stoker type in operation, the estimated emissions and emission factors of CH4 showed the opposite trend with those of NO2 when the NOx removal system was used, whereas there was no difference in CO2 emissions. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available