4.7 Article

Redox-induced mobilization of copper, selenium, and zinc in deltaic soils originating from Mississippi (USA) and Nile (Egypt) River Deltas: A better understanding of biogeochemical processes for safe environmental management

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 186, Issue -, Pages 131-140

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2016.05.032

Keywords

Potentially toxic elements; Floodplain soils; Redox chemistry; Specific UV absorbance (SUVA); Wax Lake Delta

Funding

  1. Egyptian Science and Technology Development Fund (STDF-STF) [5333]
  2. German Academic Exchange Foundation (Deutscher Akademischer Austauschdienst, DAAD) (DAAD- WAP) [A/14/05113]

Ask authors/readers for more resources

Studies about the mobilization of potentially toxic elements (PTEs) in deltaic soils can be challenging, provide critical information on assessing the potential risk and fate of these elements and for sustainable management of these soils. The impact of redox potential (E-H), pH, iron (Fe), manganese (Mn), sulfate (SO42-), chloride (Cl-), aliphatic dissolved organic carbon (DOC), and aromatic dissolved organic carbon (DAC) on the mobilization of copper (Cu), selenium (Se), and zinc (Zn) was studied in two soils collected from the Nile and Mississippi Rivers deltaic plains focused on increasing our understanding of the fate of these toxic elements. Soils were exposed to a range of redox conditions stepwise from reducing to oxidizing soil conditions using an automated biogeochemical microcosm apparatus. Concentrations of DOC and Fe were high under reducing conditions as compared to oxidizing conditions in both soils. The proportion of DAC in relation to DOC in solution (aromaticity) was high in the Nile Delta soil (NDS) and low in the Mississippi Delta soil (MDS) under oxidizing conditions. Mobilization of Cu was low under reducing conditions in both soils which was likely caused by sulfide precipitation and as a result of reduction of Cu2+ to Cu1+. Mobilization of Se was high under low EH in both soils, Release of Se was positively correlated with DOC, Fe, Mn, and SO42- in the NDS, and with Fe in the MDS. Mobilization of Zn showed negative correlations with EH and pH in the NDS while these correlations were non-significant in the MDS. The release dynamics of dissolved Zn could be governed mainly by the chemistry of Fe and Mn in the NDS and by the chemistry of Mn in the MDS. Our findings suggest that a release of Se and Zn occurs under anaerobic conditions, while aerobic conditions favor the release of Cu in both soils. In conclusion, the release of Cu, Se, and Zn under different reducing and oxidizing conditions in deltaic wetland soils should be taken into account due to increased mobilization and the potential environmental risks associated with food security in utilizing these soils for flooded agricultural and fisheries systems. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available