4.5 Article

Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

Journal

JOURNAL OF ELECTRONIC MATERIALS
Volume 46, Issue 8, Pages 5338-5348

Publisher

SPRINGER
DOI: 10.1007/s11664-017-5554-1

Keywords

Fe-Ni under bump metallization (UBM); thermal cycling; microstructural evolution; lifetime; recrystallization; electron backscatter diffraction (EBSD)

Funding

  1. Major National Science and Technology Program of China [2011ZX02602]

Ask authors/readers for more resources

Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe-xNi (x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 mu m, 1.7 mu m, and 1.4 mu m thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available