4.7 Article

Effect of mono- and divalent ions on the formation and permeability of polyelectrolyte multilayer films

Journal

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
Volume 789, Issue -, Pages 123-132

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2017.02.024

Keywords

Polyelectrolytes; Permeability; Multilayer films; Electroactive compounds; Cyclic voltammetry

Funding

  1. Marian Smoluchowski Krakow Research Consortium - a Leading National Research Centre KNOW - Ministry of Science and Higher Education

Ask authors/readers for more resources

The layer by layer (LbL) sequential adsorption of oppositely charged polyelectrolytes is a simple tool to form ultrathin multilayer membranes with highly controlled properties. In our studies we have focused on the formation of multilayer films from the pair of synthetic, model polyelectrolytes: poly(allylamine hydrochloride) (PAH)/poly(4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC)/poly(4-styrenesulfonate) (PSS) in the presence of monovalent (NaCl) and divalent (MgCl2) ions solution with the same ionic strength. Quartz crystal microbalance (QCM) was used to determine the film mass. To examine barrier properties of the multilayers two electroactive probes were selected: positively charged hexaammineruthenium (III) chloride and equimolar solution of potassium hexacyanoferrate (II) and potassium hexacyanoferrate (III) of negative charge. We demonstrated that the mass/thickness of the film was larger when the polyelectrolytes were deposited in the presence of divalent ions. On the other hand, the permeability of the polymer films depended not only on the ionic strength, but also on the valence of the ions in the polyelectrolyte solution as well as the charge of the chosen electroactive probe. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available