4.7 Article

A comparative study of various electrochemical sensors for hydrazine detection based on imidazole derivative and different nano-materials of MCM-41, RGO and MWCNTs: Using net analyte signal (NAS) for simultaneous determination of hydrazine and phenol

Journal

JOURNAL OF ELECTROANALYTICAL CHEMISTRY
Volume 787, Issue -, Pages 145-157

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2017.01.006

Keywords

Hydrazine; Phenol; Reduced graphene oxide; MCM-41 nanomaterial; Modifier; Net analyte signal (NAS)

Funding

  1. Yazd University Research Council [50/982]

Ask authors/readers for more resources

The present paper reports using 5-(5-chloro-2,4-dihydroxyphenyl)imidazo[4,5-d] [1,3]thiazin-7(3H)-one (CIT) and different characterized nano-materials (nano particles based on silica (MCM-41)) and carbon (reduced graphene oxide (RGO), carbon Nano-tubes (CNT) and the mixture of them (CNT/RGO)) in the carbon pate electrode (CPE) structure as new platforms for hydrazine determination. The main purpose of this paper is investigation of effect of silica and carbon nanomaterials on the electrochemical behaviour of the various designed sensors (CIT/MCM41/CPE, CIT/RGO/CNT/CPE, CIT/RGO/CPE and CIT/CNT/CPE) for hydrazine analysis. Under the optimum conditions, some kinetic parameters of modifier such as electron transfer coefficient (a) and heterogeneous rate constant (k) for hydrazine were obtained. The observations revealed that using nanomaterials of MCM-41, RGO, CNT and RGO/CNT has a key role in decreasing oxidation potential and increasing oxidation peak currents, obtaining wider linear range and lower detection limit. The results indicated that CIT/MCM41/CPE sensor possess two linear ranges (0.01-0.032 mu M and 1.0-200 mu M) and a lower detection limit (0.0033 mu M based on 3S(b)/m) than other fabricated sensors. The designed sensor was used for simultaneous determination of hydrazine and phenol. The obtained differential pulse voltammograms indicated overlapping and to solve this problem, net analyte signal (NAS) was used. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available