4.1 Article

Thermo-oxidative aging resistance and mechanism of a macromolecular hindered phenol antioxidant for natural rubber

Journal

JOURNAL OF ELASTOMERS AND PLASTICS
Volume 50, Issue 4, Pages 372-387

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0095244317729556

Keywords

Macromolecular antioxidant; thermo-oxidative aging; hindered phenol; synergistic effect; natural rubber

Ask authors/readers for more resources

Macromolecular antioxidant due to its low physical loss, high thermal stability, and good compatibility has been considered to be a promising candidate to inhibit polymer aging. In this study, thermo-oxidative aging resistance and antioxidative mechanism of a macromolecular hindered phenol antioxidant, namely, polyhydroxylated polybutadiene containing thioether binding 2, 2-thiobis (4-methyl-6-tert-butylphenol) (PHPBT-b-TPH) for natural rubber (NR) vulcanizate was studied in detail by oxidation induction time and accelerated thermal aging tests. The results showed that the antioxidative efficiency of PHPBT-b-TPH was very high. When the amount of PHPBT-b-TPH was only 1 phr, the NR vulcanizate could exhibit excellent thermo-oxidative aging resistance, obviously higher than that of NR vulcanizate with low-molecular-weight antioxidant TPH. After aged at 100 degrees C for 168 h, the retentions of tensile strength and elongation at break of NR vulcanizate with PHPBT-b-TPH were 43.6% and 58.6%, respectively. However, those of NR vulcanizate with TPH were 35.6% and 54.5%. In addition, it was found that both thioether and urethane groups in PHPBT-b-TPH had antioxidative ability and had synergistic effect with hindered phenol. Through our findings, new strategy to design and synthesize the macromolecular antioxidant with multi-antioxidative groups for rubber materials and other polymer materials could be developed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available