4.8 Article

Cobalt-Encapsulated Nitrogen-Doped Carbon Nanotube Arrays for Flexible Zinc-Air Batteries

Journal

SMALL METHODS
Volume 4, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smtd.201900571

Keywords

bifunctional electrocatalysts; energy conversion; flexible zinc-air batteries; nanoarrays; nanotubes

Funding

  1. National Natural Science Foundation of China [51572051]
  2. Natural Science Foundation of Heilongjiang Province [E2016023]
  3. Fundamental Research Funds for the Central Universities [HEUCF201708]

Ask authors/readers for more resources

With the current rapid growth of commercial applications for flexible and wearable optoelectronic devices, flexible power sources are very much in demand. Herein, a facile strategy to grow cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotube arrays on flexible carbon fiber cloth as self-supported electrodes for high-performance flexible zinc-air batteries is developed. Benefiting from high electrical conductivity and multiple active sites as well as free polymer binder, the self-supported electrode exhibits excellent electrocatalytic activity. The maximum power density of a zinc-air battery using the self-supported electrode as air cathode is higher than that of the zinc-air battery with Pt/C+IrO2 as air electrode. Furthermore, the zinc-air battery can be stably operated under external stress without obvious loss of the electrochemical performance. This work opens up a new pathway for the rational design of flexible electrodes for high-performance flexible power sources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available