4.7 Article

Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production

Journal

CHINESE JOURNAL OF CATALYSIS
Volume 41, Issue 1, Pages 41-49

Publisher

ELSEVIER
DOI: 10.1016/S1872-2067(19)63389-9

Keywords

Pg-C3N4; Zn0.2Cd0.8S; Diethylenetriamine; Photocatalysis; Step-scheme porous composite

Funding

  1. National Natural Science Foundation of China [51572103, 51502106]
  2. Anhui Province [1808085J14]
  3. Foundation for Young Talents in College of Anhui Province [gxyqZD2017051]
  4. Key Foundation of Educational Commission of Anhui Province [KJ2016SD53]
  5. Innovation Team of Design and Application of Advanced Energetic Materials [KJ2015TD003]

Ask authors/readers for more resources

In recent years, environmental pollution and energy crisis have become increasingly serious issues owing to the burning of fossil fuels. Among the many technologies, decomposition of water to produce hydrogen has attracted much attention because of its sustainability and non-polluting characteristic. However, highly efficient decomposition of water that is driven by visible light is still a challenge. Herein, we report the large-scale preparation of step-scheme porous graphite carbon nitride/Zn0.2Cd0.8S-diethylenetriamine (Pg-C3N4/Zn0.2Cd0.8S-DETA) composite by a facile solvothermal method. It was found by UV-vis spectroscopy that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA exhibited suitable visible absorption edge and band gap for water decomposition. The hydrogen production rate of 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite was 6.69 mmol g(-1) h(-1), which was 16.73, 1.61, and 1.44 times greater than those of Pg-C3N4, CdS-DETA, and Zn0.2Cd0.8S-DETA, respectively. In addition, 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite displayed excellent photocatalytic stability, which was maintained for seven cycles of photocatalytic water splitting test. We believe that 15%Pg-C3N4/Zn0.2Cd0.8S-DETA composite can be a valuable guide for the development of solar hydrogen production applications in the near future. (C) 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available