4.6 Article

A high-efficiency solar desalination evaporator composite of corn stalk, Mcnts and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 1, Pages 349-357

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta10898j

Keywords

-

Funding

  1. China Postdoctoral Science Foundation [2018M630330, 2019T120245]
  2. Natural Science Foundation of Heilongjiang Province [QC2018046]
  3. National Natural Science Foundation of China [51905085]
  4. Fundamental Research Funds for the Central Universities [2572017PZ12]

Ask authors/readers for more resources

Studies on solar steam evaporation for potential application in desalination have attracted much attention due to its unique advantages of low energy consumption environmental friendliness, etc. However, water molecule transportation in the capillaries of solar steam evaporators to develop a high-efficiency solar evaporation system is critical but often ignored. This work reports high-yield and low-cost natural corn stalks as solar steam generators with ultra-fast water transportation in capillaries, multi-layer self-cleaning of sea salt, large seawater storage capacity, long-term anti-corrosion properties against seawater, low thermal conductivity, and excellent evaporation properties. This solar steam evaporator with the conventional photothermal coating by multi-walled carbon nanotubes and titanium dioxide (Mcnt-TiO2) exhibits an outstanding evaporation rate of 2.48 kg m(-2) h(-1) and evaporation efficiency of 68.2% under solar light. These advantages are significantly attributed to the natural structural features of the stem marrow of corn stalks including scattered vascular bundles with super-hydrophilic properties achieving high-speed water moisture transportation, porous basic tissues with layer by layer bio-filtration, porous cavities realizing multi-stage filtration, transportation and storage of seawater, and low moisture enthalpy and heat loss. Meanwhile, an efficient and low-cost solar desalination device via bundling pluralities of corn stalks is developed to collect freshwater, and the average daily freshwater amount per unit area (4.3-5.8 kg m(-2) on sunny days and 3.0-3.9 kg m(-2) on cloudy days) can meet the daily water needs of more than twenty adults. These findings not only provide the possibility of discovering corn stalks as low-cost, scalable, highly efficient evaporation-based heat transfer devices for future efficient desalination, but also present an innovative inspiration for reducing the greenhouse effect brought by corn stalk burning, which promotes the efficient use of bio-mass straws.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available