4.6 Article

Can tonne-scale direct detection experiments discover nuclear dark matter?

Journal

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1475-7516/2017/10/035

Keywords

dark matter experiments; dark matter theory

Funding

  1. Science and Technology Facilities Council [ST4000512/1]
  2. European Research Council Project [ERC StG 279980]
  3. STFC [ST/L000512/1, ST/K002570/1] Funding Source: UKRI

Ask authors/readers for more resources

Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 sigma level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 sigma distinction is possible by these experiments individually, while 3 sigma sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 sigma.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available