4.8 Article

Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 259, Issue -, Pages 168-175

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2016.12.018

Keywords

Diabetes mellitus; Oral protein delivery; Endotoxin; Blood glucose-lowering effect; Permeability enhancer

Funding

  1. Ministry of Science and Technology of Taiwan (ROC) [MOST 105-2119-M-007-008]

Ask authors/readers for more resources

Sodium dodecyl sulfate (SDS) is generally regarded as a potent permeability enhancer in oral formulations; however, one concern related to the use of any permeation enhancer is its possible absorption of unwanted toxins during the period of epithelial permeability enhancement. In this work, the safety and efficacy of an SDS-containing bubble carrier system that is developed from an orally administered enteric-coated capsule are evaluated. The bubble carriers comprise diethylene triamine pentaacetic acid (DTPA) dianhydride, sodium bicarbonate (SBC), SDS, and insulin. Upon exposure to the intestinal fluid, DTPA dianhydride hydrolyzes to yield acids, and SBC rapidly reacts with these acids to generate CO2, producing bubble carriers, each containing a self-assembling water film. The hydrophilic insulin is entrapped in the self-assembled water film, which is stabilized by SDS. The SDS in the bubble carrier system can act as a dissolution enhancer in the dispersion of insulin molecules, as a surfactant that stabilizes the bubble carriers, as a protease inhibitor that protects the protein drug, and as a permeation enhancer that augments its oral bioavailability. Hence, a significant increase in the plasma insulin level and an excellent blood glucose-lowering response in diabetic rats are effectively achieved. Moreover, the enhancement of epithelial permeation by this SDS-containing formulation does not promote the absorption of intestinal endotoxins. The above facts indicate that the bubble carrier system that is stabilized by SDS can be used as a safe and potent carrier in the oral delivery of therapeutic proteins. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available