4.8 Article

Ultrafast and energy-efficient spin-orbit torque switching in compensated ferrimagnets

Journal

NATURE ELECTRONICS
Volume 3, Issue 1, Pages 37-42

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41928-019-0345-8

Keywords

-

Funding

  1. SpOT-LITE programme (A*STAR grant) through RIE2020 funds [A18A6b0057]
  2. National Research Foundation (NRF), Prime Minister's Office, Singapore, under its Competitive Research Programme (CRP) [NRFCRP12-2013-01]

Ask authors/readers for more resources

Spin-orbit torque can be used to manipulate magnetization in spintronic devices. However, conventional ferromagnetic spin-orbit torque systems have intrinsic limitations in terms of operation speed due to their inherent magnetization dynamics. Antiferromagnets and ferrimagnets with antiparallel exchange coupling exhibit faster spin dynamics and could potentially overcome these limitations. Here, we report ultrafast spin-orbit torque-induced magnetization switching in ferrimagnetic cobalt-gadolinium (CoGd) alloy devices. Using a stroboscopic pump-probe technique to perform time-resolved measurements, we show that the switching time in the ferrimagnets can be reduced to the subnanosecond regime and a domain wall velocity of 5.7 km s(-1) can be achieved, which is in agreement with analytical modelling and atomistic spin simulations. We also find that the switching energy efficiency in the ferrimagnets is one to two orders of magnitude higher than that of ferromagnets. Time-resolved measurements show that current-induced magnetization switching in ferrimagnetic devices is faster and more energy-efficient than in ferromagnet devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available