4.6 Article

Sulfur speciation in soured reservoirs: chemical equilibrium and kinetics

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13202-019-00824-0

Keywords

Chemical reactivity; Seawater injection; Sulfur speciation; Reactive model

Ask authors/readers for more resources

Reservoir souring is a widespread phenomenon in reservoirs undergoing seawater injection. Sulfate in the injected seawater promotes the growth of sulfate-reducing bacteria (SRB) and archaea-generating hydrogen sulfide. However, as the reservoir fluid flows from injection well to topside facilities, reactions involving formation of different sulfur species with intermediate valence states such as elemental sulfur, sulfite, polysulfide ions, and polythionates can occur. A predictive reactive model was developed in this study to investigate the chemical reactivity of sulfur species and their partitioning behavior as a function of temperature, pressure, and pH in a seawater-flooded reservoir. The presence of sulfur species with different oxidation states impacts the amount and partitioning behavior of H2S and, therefore, the extent of reservoir souring. The injected sulfate is reduced to H2S microbially close to the injection well. The generated H2S partitions between phases depending on temperature, pressure, and pH. Without considering chemical reactivity and sulfur speciation, the gas phase under test separator conditions on the surface contains 1080 ppm H2S which is in equilibrium with the oil phase containing 295.7 ppm H2S and water phase with H2S content of 8.8 ppm. These values are higher than those obtained based on reactivity analysis, where sulfur speciation and chemical reactions are included. Under these conditions, the H2S content of the gas, oil, and aqueous phases are 487 ppm, 134 ppm, and 4 ppm, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available