4.4 Article

Toward Deformation Densities for Intramolecular Interactions without Radical Reference States Using the Fragment, Atom, Localized, Delocalized, and Interatomic (FALDI) Charge Density Decomposition Scheme

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 38, Issue 13, Pages 981-997

Publisher

WILEY
DOI: 10.1002/jcc.24772

Keywords

deformation density; fragment; atom; localized; delocalized; and interatomic; domain averaged Fermi hole; intramolecular interactions; computational chemistry

Ask authors/readers for more resources

A novel approach for calculating deformation densities is presented, which enables to calculate the deformation density resulting from a change between two chemical states, typically conformers, without the need for radical fragments. The Fragment, Atom, Localized, Delocalized, and Interatomic (FALDI) charge density decomposition scheme is introduced, which is applicable to static electron densities (FALDI-ED), conformational deformation densities (FALDI-ED) as well as orthodox fragment-based deformation densities. The formation of an intramolecular NH...N interaction in protonated ethylene diamine is used as case study where the FALDI-based conformational deformation densities (with atomic or fragment resolution) are compared with an orthodox EDA-based approach. Atomic and fragment deformation densities revealed in real-space details that (i) pointed at the origin of density changes associated with the intramolecular H-bond formation and (ii) fully support the IUPAC H-bond representation. The FALDI scheme is equally applicable to intra-and intermolecular interactions. (C) 2017 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available