4.4 Article

Partial atomic multipoles for internally consistent microelectrostatic calculations

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 38, Issue 28, Pages 2420-2429

Publisher

WILEY
DOI: 10.1002/jcc.24903

Keywords

microelectrostatic calculations; distributed polarizability; atomic multipoles; charge carrier energies; charge-transfer states

Funding

  1. European Regional Development Fund [POIG.02.01.00-12-023/08]

Ask authors/readers for more resources

An extension of the extant microelectrostatic methodologies, based on the concept of distributed generalized polarizability matrix derived from the Coupled Perturbed Hartree-Fock (CPHF) equations, is proposed for self-consistent calculation of charge carrier and charge-transfer (CT) state electrostatic energies in molecular solids, including the doped, defected and disordered ones. The CPHF equations are solved only once and the generalized molecular polarizability they yield enables low cost iterations that mutually adjust the molecular electronic distributions and the local electric field in which the molecules are immersed. The approach offers a precise picture of molecular charge densities, accounting for atomic partial multipoles up to order 2, which allows one to reproduce the recently reported large charge-quadrupole contributions to CT state energies in low-symmetry local environments. It is particularly well suited for repetitive calculations for large clusters (up to 300,000 atoms), and may potentially be useful for describing electrostatic solvent effects. (c) 2017 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available