4.7 Review

A review on the applicability of integrated/hybrid membrane processes in water treatment and desalination plants

Journal

DESALINATION
Volume 363, Issue -, Pages 2-18

Publisher

ELSEVIER
DOI: 10.1016/j.desal.2014.03.008

Keywords

Integrated/hybrid membrane process; Water treatment; Desalination; Membrane pretreatment

Funding

  1. Ministry of Education Malaysia
  2. [NPRP 5-1425-2-607]

Ask authors/readers for more resources

Conventional processes involved in water treatment, either in water treatment plants or reverse osmosis desalination plants, have encountered several obstacles that have severely affected their performances and efficiencies. Pollution of natural water resources, increasing demand and overuse of clean water have all put critical stress on currently available conventional water treatment/desalination plants. Due to these problems, integrated/hybrid membrane processes have attracted much interest. An integrated/hybrid membrane system is a process which combines a membrane filtration unit (microfiltration/ultrafiltration/nanofiltration) with other processes such as coagulation, adsorption and ion exchange. Alternatively, it can be a combination of different membranes in the same system with a conventional process. The purpose of this paper is to review the applicability of integrated/hybrid membrane systems in water treatment plants and reverse osmosis desalination plants. The literature shows that many benefits and marked improvements could be achieved with integrated/hybrid membrane processes, such as enhanced quality of the water produced, energy savings, environmental friendliness, and reductions in the capital and operating costs of the plants. The implications of the integrated membrane system prove that it has huge potential to be widely applied and can lead to a breakthrough in solving the problem of water scarcity. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available