4.6 Article

Axial-Flexural Interactions of GFRP-CFFT Columns with and without Reinforcing GFRP Bars

Journal

JOURNAL OF COMPOSITES FOR CONSTRUCTION
Volume 21, Issue 3, Pages -

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)CC.1943-5614.0000771

Keywords

Concrete filled glass fiber-reinforced polymer tube (GFRP-CFFT); Glass fiber-reinforced polymer (GFRP) bar; Axial loads; Four-point load; Stress-strain model; P-M interaction

Funding

  1. University of Wollongong, Australia
  2. University of Engineering and Technology, Lahore
  3. Higher Education Commission (HEC) of Pakistan

Ask authors/readers for more resources

This study presents the results of an experimental program and analytical modeling for axial-flexural interactions of concrete-filled glass fiber-reinforced polymer tube (GFRP-CFFT) columns with and without reinforcing glass fiber-reinforced polymer (GFRP) bars. The experimental program included four steel RC specimens, four GFRP-CFFT specimens, and four GFRP bar-reinforced GFRP-CFFT specimens with an outer diameter of 205-206 mm and a height of 800-812 mm. The specimens were tested under concentric and 25- and 50-mm eccentric axial loads and four-point load. The experimental results showed that GFRP bar-reinforced GFRP-CFFT specimens sustained higher peak axial loads, axial and lateral deformations at peak axial load, and flexural loads than GFRP-CFFT specimens without reinforcing GFRP bars and steel RC specimens. Axial load and bending moment (P-M) interactions of GFRP-CFFT specimens with and without reinforcing GFRP bars and steel RC specimens were analytically modeled. A parametric study was conducted to evaluate the effects of actual confinement ratio and GFRP bar reinforcement ratio on P-M interactions of GFRP-CFFT specimens. The P-M interactions were found to be significantly affected by both actual confinement ratio and GFRP bar reinforcement ratio. (C) 2016 American Society of Civil Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available