4.4 Article

Multi-scale modeling of thermal conductivity of SiC-reinforced aluminum metal matrix composite

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 51, Issue 28, Pages 3941-3953

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998317695873

Keywords

Multi-scale modeling; ab initio calculations; molecular dynamics; thermal conductivity; composites

Ask authors/readers for more resources

High thermal conductivity is one important factor in the selection or development of ceramics or composite materials. Predicting the thermal conductivity would be useful to the design and application of such materials. In this paper, a multi-scale model is developed to predict the effective thermal conductivity in SiC particle-reinforced aluminum metal matrix composite. A coupled two-temperature molecular dynamics model is used to calculate the thermal conductivity of the Al/SiC interface. The electronic effects on the interfacial thermal conductivity are studied. A homogenized finite element model with embedded thin interfacial elements is used to predict the properties of bulk materials, considering the microstructure. The effects of temperatures, SiC particle sizes, and volume fractions on the thermal conductivity are also studied. A good agreement is found between prediction results and experimental measurements. The successful prediction of thermal conductivity could help a better understanding and an improvement of thermal transport within composites and ceramics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available