4.7 Article

Cyber Security: Effects of Penalizing Defenders in Cyber-Security Games via Experimentation and Computational Modeling

Journal

FRONTIERS IN PSYCHOLOGY
Volume 11, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpsyg.2020.00011

Keywords

monetary penalties; defenders; adversaries; cybersecurity; decision-making; instance-based learning theory; recency; frequency

Funding

  1. Department of Science and Technology (DST), Government of India [IITM/DST-ICPS/VD/251]

Ask authors/readers for more resources

Cyber-attacks are deliberate attempts by adversaries to illegally access online information of other individuals or organizations. There are likely to be severe monetary consequences for organizations and its workers who face cyber-attacks. However, currently, little is known on how monetary consequences of cyber-attacks may influence the decision-making of defenders and adversaries. In this research, using a cyber-security game, we evaluate the influence of monetary penalties on decisions made by people performing in the roles of human defenders and adversaries via experimentation and computational modeling. In a laboratory experiment, participants were randomly assigned to the role of hackers (adversaries) or analysts (defenders) in a laboratory experiment across three between-subject conditions: Equal payoffs (EQP), penalizing defenders for false alarms (PDF) and penalizing defenders for misses (PDM). The PDF and PDM conditions were 10-times costlier for defender participants compared to the EQP condition, which served as a baseline. Results revealed an increase (decrease) and decrease (increase) in attack (defend) actions in the PDF and PDM conditions, respectively. Also, both attack-and-defend decisions deviated from Nash equilibriums. To understand the reasons for our results, we calibrated a model based on Instance-Based Learning Theory (IBLT) theory to the attack-and-defend decisions collected in the experiment. The model's parameters revealed an excessive reliance on recency, frequency, and variability mechanisms by both defenders and adversaries. We discuss the implications of our results to different cyber-attack situations where defenders are penalized for their misses and false-alarms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available