4.6 Article

In situ synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices

Journal

RSC ADVANCES
Volume 10, Issue 3, Pages 1281-1286

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ra06729a

Keywords

-

Funding

  1. National Natural Science Foundation of China [51432006, 41573127]
  2. Zhejiang Provincial Natural Science Foundation of China [LY18E030010]
  3. Central Public-interest Scientific Institution Basal Research Fund [Y2017JC10]
  4. Open project of State Key Laboratory of Supramolecular Structure and Materials [sklssm2019026]

Ask authors/readers for more resources

Multi-color-emissive fluorescent polymer nanocomposite films have potential applications in optoelectronic devices. Herein, stretchable, mechanically stable multi-color carbon-dots-based films are in situ fabricated by condensation and aging of carboxylated polyurethane in the presence of various carbon sources. As-prepared CDs/PU films emit different colors covering from blue (414 nm) to red (620 nm) by tuning reaction conditions. Moreover, CDs are fixed and have good dispersion in the PU matrix due to the interactions of amine groups from the carbon sources with the carboxylate group of PU. Thus, phase separation of composite films can be avoided. And, more than 90% of their emission intensity is preserved after soaking in water for 30 days, aging for up to 6 h at 100 degrees C, and subjecting to several cycles of stretching and natural recovery. These advantages are encouraging for the use of CDs/PU composite films in solid-state lighting applications. Remote multi-color LEDs have been fabricated by placing a down-conversion layer of CDs/PU films separated through coating them on the same chips (emission at 365 nm), with Commission Internationale de l'Eclairage color coordinates of (0.22, 0.23), (0.43, 0.53), (0.49, 0.46), and (0.41, 0.28), respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available