4.7 Article

Diethylenetriamine-assisted synthesis of amino-rich hydrothermal carbon-coated electrospun polyacrylonitrile fiber adsorbents for the removal of Cr(VI) and 2,4-dichlorophenoxyacetic acid

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 487, Issue -, Pages 297-309

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2016.10.057

Keywords

Amino-functionalized carbonaceous adsorbent; Hydrothermal carbonization; Electrospinning; Anionic pollutant

Funding

  1. National Natural Science Foundation of China [21274052, 51303060, 21474043]
  2. Jilin Provincial Science and Technology Department Project [20130206064GX]

Ask authors/readers for more resources

An environmentally benign and efficient hydrothermal carbonization method is widely applied for the preparation of carbon-based adsorbents. However, the adsorption capacity toward anionic species would be influenced due to the negatively charged surface of the traditional hydrothermal carbonaceous materials; moreover most of the carbonaceous materials were in the form of powder which restricted the practical applications. Herein, amino-rich hydrothermal carbon-coated electrospun polyacrylonitrile fiber (PAN@NC) adsorbents were obtained through one-step hydrothermal carbonization approach assisted by diethylenetriamine using polyacrylonitrile (PAN) fibers as the templates, which showed highly efficient adsorption for anionic pollutants. The PAN@NC fibers were characterized in detail to confirm their structures and composition. The flexible and robust PAN@NC fiber membrane exhibited high adsorption capacity and good regeneration and recycling ability toward the anionic metal ion Cr(VI) and herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). According to the Langmuir model, the adsorption behaviors showed monolayer adsorption capacities of 290.70 mg/g and 164.47 mg/g for Cr(VI) and 2,4-D, respectively, which were higher than that of many other adsorbents. Recycling study indicated that the removal efficiencies for both pollutants retained above 90% after five cycles. These findings demonstrate that PAN@NC fibers are promising adsorbents for the removal of anionic pollutants from wastewater solutions. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available