4.6 Review

Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: will we stop with photocorrosion?

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 5, Pages 2286-2322

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta12799b

Keywords

-

Funding

  1. Program for the National Natural Science Foundation of China [51879101, 51579098, 51779090, 51709101, 51521006, 51809090, 51909084]
  2. National Program for Support of Top-Notch Young Professionals of China (2014)
  3. Programfor Changjiang Scholars and Innovative Research Team in University [IRT-13R17]
  4. Hunan Provincial Science and Technology Plan Project [2018SK20410, 2017SK2243, 2016RS3026]
  5. Fundamental Research Funds for the Central Universities [531119200086, 531118010114, 531107050978, 541109060031]

Ask authors/readers for more resources

The status of photocatalytic (PC)/photoelectrochemical (PEC) water splitting as a promising approach to solar-to-chemical energy conversion has increased significantly over the past several decades for addressing the energy shortage. However, the overall energy conversion efficiency is still relatively poor due to the severe photocorrosion in photosensitive semiconductors. Herein, the review begins with the discussion of the photocorrosion mechanism with several typical semiconductors as examples. Then the feasible characterization methods used to evaluate the stability of semiconductors are summarized. Notably, most studies regarding water splitting focus on achieving high efficiency by improving the charge separation and transfer efficiency within the semiconductors. This review focuses on the recent advances in effective strategies for photocorrosion inhibition of semiconductor-based composites with respect to their intrinsic properties and interface charge transfer kinetics, including morphology/size control, heteroatom doping, heterojunction construction, surface modification, and reaction environment regulation. Furthermore, an in-depth investigation of photocorrosion pathways and mechanisms is critical to accurately and effectively address the photocorrosion of semiconductor-based composites to improve PC/PEC water splitting performance in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available