4.6 Article

Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 8, Issue 6, Pages 3222-3227

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta12376h

Keywords

-

Funding

  1. National Natural Science Foundation of China [51722105]
  2. Zhejiang Provincial Natural Science Foundation of China [LR18B030001]
  3. National Key Research and Development Program [2016YFB0901600]
  4. Fundamental Research Funds for the Central Universities [2018XZZX002-08]
  5. Engineering and Physical Sciences Research Council (EPSRC) [EP/N032861]
  6. EPSRC [EP/N032861/1] Funding Source: UKRI

Ask authors/readers for more resources

Prussian blue analogues hold great promise as cathodes in sodium ion batteries. Among Prussian blue analogues, manganese hexacyanoferrate is desirable because of its high working voltage, as well as its high specific capacity and low cost. However, poor cycling stability and unsatisfactory rate capability of manganese hexacyanoferrate, which are mainly caused by poor intrinsic conductivity, phase transition, side reactions, and transition metal dissolution, extremely limit its practical application. In this work, we demonstrate a high-rate and long-life MnHCF@PEDOT sodium ion battery cathode through a facile in situ polymerization method. Benefitting from the synergistic effect of the inhibited Mn/Fe dissolution, suppressed phase transition, and improved capacitive storage, the composite electrode exhibits a high capacity of 147.9 mA h g(-1) at 0.1C, 95.2 mA h g(-1) at a high rate of 10C, and 78.2% capacity retention after 1000 cycles. Furthermore, even at a low temperature of -10 degrees C, MnHCF@PEDOT still delivers a high capacity of 87.0 mA h g(-1) and maintains 71.5 mA h g(-1) (82.2%) after 500 cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available