3.9 Article

Characterization and optimization of the mechanical properties of electrospun gelatin nanofibrous scaffolds

Journal

WORLD JOURNAL OF ENGINEERING
Volume 17, Issue 1, Pages 12-20

Publisher

EMERALD GROUP PUBLISHING LTD
DOI: 10.1108/WJE-04-2019-0119

Keywords

Response surface methodology; Electrospinning; Nanofibers; Mechanical properties

Ask authors/readers for more resources

Purpose Electrospinning is a versatile technique for producing polymeric nanofibers by the application of electrostatic forces. The electrospinnability of polymeric solutions and the properties of electrospun nanofibers can be influenced and tuned by the process parameters. This paper aims to investigatethe influence of three key process parameters on the tensile strength of electrospun gelatin nanofibrous scaffold. Design/methodology/approach The experiments were conducted with a custom-built electrospinning system. Design of experiments of the three operating variables, namely, gelatin concentration, applied potential and feed rate, with five levels were investigated. Optimization of the tensile strength of electrospun gelatin scaffold was achieved with the aid of response surface methodology. Findings The resulting second-order mathematical models capable of demonstrating good correlation on the effects of the three identified process parameters with the experimental measured tensile strength, where the highest tensile strength was obtained on gelatin nanofibrous scaffold electrospun at 16per cent (w/v) gelatin concentration in acetic acid, 19 kV applied potential and 0.31 ml/h feed rate. Originality/value The resulting second-order mathematical models capable of demonstrating good correlation on the effects of the three identified process parameters with the experimental measured tensile strength, where the highest tensile strength was obtained on gelatin nanofibrous scaffold electrospun at 16per cent (w/v) gelatin concentration in acetic acid, 19 kV applied potential and 0.31 ml/h feed rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available