4.7 Article

A new look at the environmental conditions favorable to secondary ice production

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 20, Issue 3, Pages 1391-1429

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-20-1391-2020

Keywords

-

Funding

  1. Environment and Climate Change Canada (ECCC)
  2. National Research Council (NRC)
  3. Transport Canada (TC)
  4. Federal Aviation Administration (FAA)
  5. ECCC
  6. TC
  7. NRC RAIR program
  8. FAA under Air Force Contract [FA8702-15-D-0001]

Ask authors/readers for more resources

This study attempts a new identification of mechanisms of secondary ice production (SIP) based on the observation of small faceted ice crystals (hexagonal plates or columns) with typical sizes smaller than 100 mu m. Due to their young age, such small ice crystals can be used as tracers for identifying the conditions for SIP. Observations reported here were conducted in oceanic tropical mesoscale convective systems (MCSs) and midlatitude frontal clouds in the temperature range from 0 to -15 degrees C and heavily seeded by aged ice particles. It was found that in both MCSs and frontal clouds, SIP was observed right above the melting layer and extended to higher altitudes with colder temperatures. The roles of six possible mechanisms to generate the SIP particles are assessed using additional observations. In most observed SIP cases, small secondary ice particles spatially correlated with liquid-phase, vertical updrafts and aged rimed ice particles. However, in many cases, neither graupel nor liquid drops were observed in the SIP regions, and therefore, the conditions for an active Hallett-Mossop process were not met. In many cases, large concentrations of small pristine ice particles were observed right above the melting layer, starting at temperatures as warm as -0.5 degrees C. It is proposed that the initiation of SIP above the melting layer is stimulated by the recirculation of large liquid drops through the melting layer with convective turbulent updrafts. After re-entering a supercooled environment above the melting layer, they impact with aged ice, freeze, and shatter. The size of the splinters generated during SIP was estimated as 10 mu m or less. A principal conclusion of this work is that only the freezing-drop-shattering mechanism could be clearly supported by the airborne in situ observations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available