4.1 Article

CAPE increases the expression of SOD3 through epigenetics in human retinal endothelial cells

Journal

Publisher

JOURNAL CLINICAL BIOCHEMISTRY & NUTRITION
DOI: 10.3164/jcbn.16-109

Keywords

extracellular-superoxide dismutase; caffeic acid phenethyl ester; diabetic retinopathy; histone deacetylase; myocyte enhancer factor 2

Funding

  1. Japan Society for the Promotion for Science [26460070]
  2. Gifu Pharmaceutical University
  3. All Japan Coffee Association
  4. Api Co., Ltd.

Ask authors/readers for more resources

Extracellular-superoxide dismutase (EC-SOD or SOD3), which catalyzes the dismutation of superoxide anions into hydrogen peroxide, plays a key role in vascular protection against reactive oxygen species (ROS). The excess generation of ROS is closely involved in the pathogenesis of diabetic retinopathy (DR); therefore, the maintenance of SOD3 expression at high levels is important for the prevention of DR. In the present study, we showed that caffeic acid phenethyl ester (CAPE) increased the expression of SOD3 through the acetylation of histone within the SOD3 promoter region in human retinal endothelial cells (HRECs). Histone acetylation within its promoter was focused on the inhibition of histone deacetylase (HDAC), and we examined the involvement of myocyte enhancer factor 2 (MEF2) and HDAC1 in CAPE-elicited SOD3 expression. Our results demonstrate that SOD3 silencing in basal HRECs is regulated by HDAC1 composed with MEF2A/2D hetero dimers. Moreover, phosphorylation of threonine 312 in MEF2A and dissociation of HDAC1 from SOD3 promoter play pivotal roles in CAPE-elicited SOD3 expression. Overall, our findings provide that CAPE may be one of the seed compounds that maintain redox homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available