4.7 Article

Quantifying the Uncertainties of Reanalyzed Arctic Cloud and Radiation Properties Using Satellite Surface Observations

Journal

JOURNAL OF CLIMATE
Volume 30, Issue 19, Pages 8007-8029

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-16-0722.1

Keywords

-

Funding

  1. NOAA MAPP Grant at the University of North Dakota [NA13OAR4310105]
  2. NASA CERES project at The University of Arizona [NNX17AC52G]
  3. NASA [1003708, NNX17AC52G] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Reanalyses have proven to be convenient tools for studying the Arctic climate system, but their uncertainties should first be identified. In this study, five reanalyses (JRA-55, 20CRv2c, CFSR, ERA-Interim, and MERRA-2) are compared with NASA CERES-MODIS (CM)-derived cloud fractions (CFs), cloud water paths (CWPs), top-of-atmosphere (TOA) and surface longwave (LW) and shortwave (SW) radiative fluxes over the Arctic (70 degrees-90 degrees N) over the period of 2000-12, and CloudSat-CALIPSO (CC)-derived CFs from 2006 to 2010. The monthly mean CFs in all reanalyses except JRA-55 are close to or slightly higher than the CC-derived CFs from May to September. However, wintertime CF cannot be confidently evaluated until instrument simulators are implemented in reanalysis products. The comparison between CM and CCCFs indicates that CM-derived CFs are reliable in summer but not in winter. Although the reanalysis CWPs follow the general seasonal variations of CM CWPs, their annual means are only half or even less than the CM-retrieved CWPs (126 g m(-2)). The annual mean differences in TOA and surface SW and LW fluxes between CERES EBAF and reanalyses are less than 6 W m(-2) for TOA radiative fluxes and 16 W m(-2) for surface radiative fluxes. All reanalyses show positive biases along the northern and eastern coasts of Greenland as a result of model elevation biases or possible CM clear-sky retrieval issues. The correlations between the reanalyses and CERES satellite retrievals indicate that all five reanalyses estimate radiative fluxes better than cloud properties, and MERRA-2 and JRA-55 exhibit comparatively higher correlations for Arctic cloud and radiation properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available