4.7 Article

Algorithm of multi-criterion green process assessment for renewable raw materials bioconversion

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 162, Issue -, Pages 380-390

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2017.06.013

Keywords

Green chemistry; Algorithm of multi-criterion selection; Deproteinized residues processing; Microbial conversion: efficiency assessment

Funding

  1. Ministry of Education and Science of the Russian Federation
  2. State Assignment Basic part [17.1.18.0026.01 (10.6309.2017/BP)]

Ask authors/readers for more resources

Green Chemistry is one of the most important and practically used tools to integrate principles of sustainable development and green economy in the field of chemistry and the chemical industry in various countries. There is a number of metrics in the field of green chemistry. The research presented is an original algorithm of multi-criterion green process assessment for renewable raw materials bioconversion. The algorithm is used when the process of obtaining the same target substance N is possible to be carried out in many ways (or under different conditions). In this case, the researcher task is to choose the best process in compliance with the principles of green chemistry. The multiple-factor complex assessment is to be used to choose the optimum process conditions. The algorithm designed was tested for efficiency in choosing the optimal processes of acid hydrolysis of deproteinized meals. The deproteinized sunflower meal preprocessing efficiency analysis was carried out during the course of its microbiological conversion into a vegetable protein and carbohydrate feed supplement taking into account the principles of green chemistry. The methodology testing was based on the experimental data obtained by chemical hydrolysis of deproteinized residues, and two-stage pretreatment process of deproteinized residues processing comprising the steps of chemical and enzymatic hydrolysis. The combination of chemical and enzymatic hydrolysis in two-stage deproteinized sunflower meal processing was justified. The proposed algorithm allowed not only to determine the effective ranges of parameters of deproteinized sunflower meal processing, but also allowed to justify the possibility of its optimization due to the both processes combined. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available