4.6 Article

Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization

Journal

DENTAL MATERIALS
Volume 31, Issue 12, Pages 1510-1522

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2015.09.020

Keywords

Biocompatibility; Cytotoxicity; Calcium silicate cements; Mineral trioxide aggregate; Revascularization

Funding

  1. Natural Science Foundation of Shanghai [2015JM8383]
  2. NIDCR [R01 DE015306-06]
  3. NSFC [81400555]
  4. CAPES [9212-13-2]

Ask authors/readers for more resources

Objectives. In pulpal revascularization, a protective material is placed coronal to the blood clot to prevent recontamination and to facilitate osteogenic differentiation of mesenchymal stem cells to produce new dental tissues. Although mineral trioxide aggregate (MTA) has been the material of choice for clot protection, it is easily displaced into the clot during condensation. The present study evaluated the effects of recently introduced calcium silicate cements (Biodentine and TheraCal LC) on the viability and osteogenic differentiation of human dental pulp stem cells (hDPSCs) by comparing with MTA Angelus. Methods. Cell viability was assessed using XTT assay and flow cytometry. The osteogenic potential of hDPSCs exposed to calcium silicate cements was examined using qRT-PCR for osteogenic gene expressions, alkaline phosphatase enzyme activity, Alizarin red S staining and transmission electron microscopy of extracellular calcium deposits. Parametric statistical methods were employed for analyses of significant difference among groups, with alpha = 0.05. Results. The cytotoxic effects of Biodentine and TheraCal LC on hDPSCs were time- and concentration-dependent. Osteogenic differentiation of hDPSCs was enhanced after exposure to Biodentine that was depleted of its cytotoxic components. This effect was less readily observed in hDPSCs exposed to TheraCal LC, although both cements supported extracellular mineralization better than the positive control (zinc oxide-eugenol-based cement). Significance. A favorable tissue response is anticipated to occur with the use of Biodentine as a blood clot-protecting material for pulpal revascularization. Further investigations with the use of in vivo animal models are required to validate the potential adverse biological effects of TheraCal LC on hDPSCs. (C) 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available