4.7 Article

Desalination of shale gas produced water: A rigorous design approach for zero-liquid discharge evaporation systems

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 140, Issue -, Pages 1399-1414

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2016.10.012

Keywords

Shale gas; Zero-liquid discharge (ZLD); Single-effect evaporation (SEE); Multiple-effect evaporation (MEE); Mechanical vapor recompression (MVR); Energy recovery

Funding

  1. European Union's Horizon 2020 Research and Innovation Programme [640979]
  2. National Council for Scientific and Technological Development of Brazil (CNPq) [233953/2014-0]
  3. H2020 Societal Challenges Programme [640979] Funding Source: H2020 Societal Challenges Programme

Ask authors/readers for more resources

Shale gas has recently emerged as a promising energy source to face the increasing global demand. This paper introduces a new rigorous optimization model for the simultaneous synthesis of single and multiple-effect evaporation (SEE/MEE) systems, considering mechanical vapor recompression (MVR) and energy recovery. The proposed model has been especially developed for the desalination of high-salinity produced water from shale gas hydraulic fracturing (fracking). Its main objective is to enhance the system energy efficiency through the reduction of brine discharges. Therefore, the outflow brine salinity should be near to salt saturation conditions to achieve zero liquid discharge (ZLD). The multiple-effect superstructure is comprised by several effects of horizontal-tube falling film evaporation. Due to the inclusion of the electric-driven mechanical compressor, no other external energy source is needed in the SEE/MEE system. A more accurate process design is attained through the calculation of the overall heat transfer coefficients in function of the individual coefficients for the falling boiling film and vapor condensation. Additionally, the SEE/MEE-MVR model allows the estimation of the major geometrical characteristics of the evaporation system. The non-linear programming (NLP)-based model is optimized using the CONOPT solver under GAMS by the minimization of the process total annualized cost. Thermal analysis is carried out to evaluate the effects of the feed salinity and geometrical parameters on system heat transfer performance. The results highlight the ability of the developed model to rigorously design SEE/MEE-MVR systems by improving their cost-effectively and reaching ZLD conditions. (C) 2016 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available