4.7 Article

Cradle-to-cradle approach in the life cycle of silicon solar photovoltaic panels

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 168, Issue -, Pages 51-59

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2017.08.206

Keywords

Photovoltaic; Cradle-to-cradle; Closed-loop-cycle; Manufacturing; Up-cycling; Re-cycling

Ask authors/readers for more resources

The penetration rates of solar photovoltaic (PV) technology have growth exponentially and are expected to continue growing. Consequently, in the medium term, the volume of PV panels to be decommissioned will also increase, thus creating a massive amount of waste with resulting negative environmental implications.& para;& para;Among the methodologies that tackle the challenges for reducing the use of non-renewable abiotic resources and the level of waste, the novel cradle-to-cradle (C2C) manufacturing approach states that we can maintain our current levels of economic growth without damaging the environment and promoting a shift in the concept of re-cycling.& para;& para;While the possibility of applying C2C principles within a closed-loop material cycle (CLMC) looks promising, it still requires further research and improvement, particularly to support robust business decisions and policy development. This paper first presents the main challenges and opportunities for C2C implementation for silicon-based solar PV modules, given the complexity of creating and maintaining a true CLMC system. It then calls for urgent development of a credible scientific framework for system modelling, based on thermodynamics and mathematics, in order to truly move from re-cycling to up-cycling. As an initial step, a conceptual model and a suitable time-space scale for the required C2C-CLMC system is proposed. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available