4.6 Article

Energy, exergy and parametric analysis of a combined cycle power plant

Journal

THERMAL SCIENCE AND ENGINEERING PROGRESS
Volume 15, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.tsep.2019.100450

Keywords

Combined cycle power plant; Triple pressure; Energy; Exergy; Efficiency; Parametric analyses

Funding

  1. King Fahd University of Petroleum and Minerals (KFUPM) [DUP18101]

Ask authors/readers for more resources

This paper presents the thermodynamics (energy and exergy) analysis of a power plant using the design data. The plant is a triple pressure combined cycle power plant (CCPP) equipped with reheat facilities. The temperature gradient as well as the exergy destruction were determined across each components of the heat recovery steam generator (HRSG). Among the components of the HRSG high-pressure evaporator experienced a large temperature gradient which accounted for high irreversibility while intermediate-pressure superheater experienced low-temperature change and therefore low irreversibility. Exergy analysis showed that the major source of irreversibility (exergy destruction) in the steam turbine cycle (STC) of the CCPP is the stack followed by the HRSG, turbine, and condenser. The exergetic efficiency of the turbine is the highest in the STC with more than 92% while the exergetic efficiency of the condenser was the lowest one with less than 63%. Parametric analyses were conducted where the effects of some operating parameters on the turbine output, efficiencies, and exergy destruction were investigated. The results indicated that superheat pressure, reheat pressure, and steam quality at the exit of the low-pressure steam turbine significantly affect the output of the turbine and efficiencies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available