4.7 Article

Material criticality assessment in early phases of sustainable product development

Journal

JOURNAL OF CLEANER PRODUCTION
Volume 161, Issue -, Pages 40-52

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2017.05.085

Keywords

Material criticality; Early design phase; Sustainable product development; Decision support; Eco-design

Funding

  1. Knowledge Foundation in Sweden
  2. Chalmers
  3. Wingquist laboratory
  4. GKN Aerospace Systems, Sweden

Ask authors/readers for more resources

Improving structural performance of products is often realized by introducing increasingly advanced and complex materials as well as material combinations. What material to use in products is decided in the early product development phases and has a decisive impact for manufacturing, maintenance and end of -life. A particular challenge is that the decisions need to be made upfront, where information of the forthcoming product is limited. This paper presents an early product development method to assess the criticality of alloy materials from a resource availability- and sustainability perspective. The method distinguishes itself from previous studies that focus on element criticality on a country level. The method is used to characterize and analyze the criticality of alloys in a three-step process that aims to support product design teams selecting what material alloy to use in early phases of design. It provides a proactive and systematic approach related to critical materials to avoid potential future problems on a long-term basis. The method presented has been developed in an action research-based approach in an aerospace company where a product design team validated and evaluated the material criticality method. The generic nature of the method is likely to be applicable not only to aerospace companies but also to other industries using advanced alloys. An important finding from applying the method in the company case was the clear link between long term business impact and sustainability performance. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available