4.7 Article Proceedings Paper

Nanoantennas with balanced gain and loss

Journal

NANOPHOTONICS
Volume 9, Issue 2, Pages 473-480

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/nanoph-2019-0392

Keywords

nanoantenna; PT symmetry; gain; active materials; asymmetric response

Funding

  1. US National Science Foundation [ECCS-1710697]
  2. National Science Foundation

Ask authors/readers for more resources

The large cross sections and strong-confinement provided by the plasmon resonances of metallic nanostructures make these systems an ideal platform to implement nanoantennas. Like their macroscopic counterparts, nanoantennas enhance the coupling between deep subwavelength emitters and free radiation, providing, at the same time, an increased directionality. Here, inspired by the recent works in parity-time symmetric plasmonics, we investigate how the combination of conventional plasmonic nanostructures with active materials, which display optical gain when externally pumped, can serve to enhance the performance of metallic nanoantennas. We find that the presence of gain, in addition to mitigating the losses and therefore increasing the power radiated or absorbed by an emitter, introduces a phase difference between the elements of the nanoantenna that makes the optical response of the system directional, even in the absence of geometrical asymmetry. Exploiting these properties, we analyse how a pair of nanoantennas with balanced gain and loss can enhance the far-field interaction between two dipole emitters. The results of this work provide valuable insight into the optical response of nanoantennas made of active and passive plasmonic nanostructures, with potential applications for the design of optical devices capable of actively controlling light at the nanoscale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available