4.5 Article

Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates

Journal

HELIYON
Volume 6, Issue 1, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.heliyon.2019.e03123

Keywords

Materials science; Chemistry; Copper nanoparticles; Green synthesis; Date palm; Seedless dates; Chemical reduction

Ask authors/readers for more resources

In the last few years, copper and copper oxide nanoparticles were involved in many applications; this encouraged many researchers worldwide to develop more facile synthesis methods. Unprecedentedly, the current study reports a green method for synthesizing copper/copper oxide nanoparticles (Cu/Cu2O NPs) using the extract of seedless dates. Cu/Cu2O NPs were synthesized according to the chemical reduction method using seedless dates' extract as a reducing agent due to its high content of phenolics and flavonoids. Transmission Electron Microscopy (TEM) revealed that roughly spherical particles were synthesized. Dynamic Light Scattering (DLS) showed that the synthesized Cu/Cu2O NPs have an average particle size of 78 nm and zeta potential of +41 mV, indicating a good stability of the particles. Successful synthesis of Cu/Cu2O NPs was affirmed through both X-Ray Diffraction (XRD), which revealed the presence of the characteristic peaks of copper at 2 theta = 43.2745, 50.4083 and 74.1706 degrees, and UV-Vis. Spectroscopy, which revealed the surface plasmonic resonance peak characterizes Cu/Cu2O NPs at 576 nm. In addition, Fourier Transform Infrared Spectroscopy (FTIR) revealed the presence of phenolic compounds, which were responsible for reducing copper ions into copper nanoparticles through their carbonyl and hydroxyl linkages, adsorbed from the extract on Cu/Cu2O NPs. Conclusively, the current work provides, for the first time, a simple, cost-effective and environmentally friendly method for synthesizing Cu/Cu2O NPs using useless seedless dates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available