4.3 Article

Influence of alumina air-abrasion for highly translucent partially stabilized zirconia on flexural strength, surface properties, and bond strength of resin cement

Journal

JOURNAL OF APPLIED ORAL SCIENCE
Volume 28, Issue -, Pages -

Publisher

UNIV SAO PAULO FAC ODONTOLOGIA BAURU
DOI: 10.1590/1678-7757-2019-0371

Keywords

Ceramics; Dental air abrasion; Dental bonding; X-ray crystallography; Flexural strength

Ask authors/readers for more resources

Objective: This study aims to evaluate the influence of different air-abrasion pressures and subsequent heat treatment on the flexural strength, surface roughness, and crystallographic phases of highly translucent partially stabilized zirconia (Y-PSZ), and on the tensile bond strength of resin cement to Y-PSZ. Methodology: Fully sintered zirconia specimens were ground with SiC paper (control) and/or air-abraded with 50 mu m particles of alumina at 0.1, 0.15, 0.2, or 0.3 MPa or left as-sintered. After air-abrasion at 0.2 MPa (0.2AB), additional specimens were then heated to 1500 degrees C, and held for one hour at this temperature (0.2AB+HT1h). Flexural strength and surface roughness were evaluated. Crystalline phase identification was also carried out using X-ray diffraction. Bonded zirconia specimens with self-adhesive resin cement were stored in distilled water at 37 degrees C for 24 h, either with or without aging (thermal cycling 4-60 degrees C/20000). Results were analyzed statistically by ANOVA and Tukey-Kramer tests. Results: The flexural strength decreased with the increase in air-abrasion pressure, while in contrast, the surface roughness increased. The lowest flexural strength and the highest roughness value were found for the 0.2AB and 0.3AB groups, respectively. All groups contained cubic-, tetragonal (t)-, and rhombohedral (r)-ZrO2 phases with the exception of the as-sintered group. Upon increasing the air-abrasion pressure, the relative amount of the r-ZrO2 phase increased, with a significant amount of r-ZrO2 phase being detected for the 0.2AB and 0.3AB groups. The 0.2AB+HT1h group exhibited a similar flexural strength and t-ZrO2 phase content as the as-sintered group. However, the 0.2AB group showed a significantly higher tensile bond strength (p<0.05) than the 0.2AB+HT1h group before and after aging. Conclusion: Micromechanical retention by alumina air-abrasion at 0.2 MPa, in combination with chemical bonding of a resin to highly translucent Y-PSZ using a MDP-containing resin cement may enable durable bonding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available