4.6 Article

A molybdenum disulfide/reduced graphene oxide fiber coating coupled with gas chromatography-mass spectrometry for the saponification-headspace solid-phase microextraction of polychlorinated biphenyls in food

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1525, Issue -, Pages 42-50

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2017.10.026

Keywords

Milk; Polychlorinated biphenyls; Headspace solid-phase microextraction; Saponification; Reduced graphene oxide; MoS2

Funding

  1. Natural Science Foundation of Zhejiang [LY17C200007, LY15B050002, LY16B050003, 2017C33004, 2017C37023]
  2. Natural Science Foundation of Ningbo [2016A610084, 2017C50035, 2017A610225]
  3. K.C. Wong Magna Fund in Ningbo University

Ask authors/readers for more resources

In this work, the molybdenum disulfide/reduced graphene oxide (MoS2/RGO) composite material was synthesized as a fiber coating to extract seven indicator polychlorinated biphenyls (PCBs; PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) present in food via a saponification-headspace solid-phase microextraction assay (saponification-HS-SPME). The MoS2/RGO coating was prepared and deposited on a stainless steel wire with the help of a silicone sealant and used as an SPME fiber. The alkali solution dissolved the fat and helped in releasing the PCBs present in milk to the headspace for extraction under 100 degrees C. Following desorption in the inlet, the targets were quantified by gas chromatography-mass spectrometry. The effects of sorbent dosage, extraction time, added salts, and stirring rate on the extraction efficiency were investigated. The new coating was able to adsorb a higher amount of analytes, which was about 1.1-2.9 times in comparison with the commercially available SPME fiber (coated with divinyl-benzene/carboxeri/polydimethylsiloxane). It also showed the highest adsorption capability toward PCBs, which was 1.5-2.7 times that of the prepared RGO modified fiber. Moreover, MoS2 also showed a strong affinity toward PCBs in a manner similar to its affinity for graphene. The developed method is simple and environmentally friendly as it does not require any organic solvents. Furthermore, it exhibits good sensitivity with detection limits less than 0.1 ngmL(-1), linearity (0.25-100 ngmL(-1)), and reproducibility (relative standard deviation below 10% for n = 3). The novel SPME fibers are inexpensive, reusable, and can be easily prepared and manipulated. In addition, the saponification-HS-SPME assay was also found to be suitable for screening persistent organic pollutants in dairy products. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available