4.6 Article

A novel molybdenum disulfide nanosheet self-assembled flower-like monolithic sorbent for solid-phase extraction with high efficiency and long service life

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1507, Issue -, Pages 18-24

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2017.05.018

Keywords

Solid phase extraction; MoS2; Flavonoids; High extraction efficiency; Long service life

Funding

  1. National Natural Science Foundation of China [21665014]

Ask authors/readers for more resources

A novel material consisting of molybdenum disulfide (MoS2) nanosheet that self-assemble into flower-like microspheres which aggregate to form a monolithic matrix with a micro or nano-scaled mesopore structure was successfully synthesized and used as an efficient sorbent for solid-phase extraction (SPE) due to its large specific adsorption area and good stability. The extraction properties of the as-prepared sorbent were evaluated by high-performance liquid chromatography with variable wavelength detection (HPLC-VWD) by analyzing four flavonoids (apigenin, quercetin, luteolin, and kaempferol). Under optimal conditions, the LODs and LOQs were found to be in the ranges of 0.1-0.25 and 0.4-0.5 mu gL(-1), respectively, and wide linear ranges were obtained with correlation coefficients (R) ranging from 0.9991 to 0.9996. Compared with commercial C18 and Alumina-N sorbents, the as-prepared sorbent showed high extraction efficiency at different concentrations of flavonoids. After 100 uses, the extraction ability of the self-assembled MoS2 nanosheet monolithic sorbent had no evident decline, denoting a long service life. Finally, the SPE-HPLC-VWD method using the as-prepared sorbent was applied to flavonoid analysis in beverage samples with satisfactory results. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available