4.5 Article

Chemometrics approach for optimization of simultaneous adsorption of Alizarin red S and Congo red by cobalt hydroxide nanoparticles

Journal

JOURNAL OF CHEMOMETRICS
Volume 31, Issue 5, Pages -

Publisher

WILEY
DOI: 10.1002/cem.2886

Keywords

adsorption; cobalt hydroxide nanoparticles; partial least square regression (PLS); response surface methodology (RSM)

Ask authors/readers for more resources

The present study deals with the simultaneous adsorption of Alizarin Red (AR) and Congo red (CR) by cobalt hydroxide nanoparticles in a batch system. Cobalt hydroxide nanoparticles as novel and efficient adsorbent are successfully used to remove two anionic dyes from aqueous solutions simultaneously. Partial least square regression as a multivariate calibration method is developed for the simultaneous determination of AR and CR in binary solutions, to overcome the severe spectral overlap. The influence of various parameters was investigated on dye adsorption such as pH, initial concentration of dyes, and sorbent mass. A response surface methodology was achieved through performing the central composite design approach to optimize the removal percent of dyes by cobalt hydroxide nanoparticles. The proposed quadratic model resulting from the central composite design approach fitted very well with the experimental data. The optimal conditions for dye removal were pH = 5.5, sorbent dose = 43 mg, CAR (initial AR concentration) = 351 mg/L, and CCR (initial CR concentration) = 616 mg/L. Isotherm modeling and thermodynamic studies were also conducted. Furthermore, the sorbent was characterized by the Fourier transform infrared, scanning electron microscopy, and X-ray diffraction analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available