4.7 Article

Classical Force Fields Tailored for QM Applications: Is It Really a Feasible Strategy?

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 13, Issue 10, Pages 4636-4648

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.7b00777

Keywords

-

Funding

  1. European Research Council (ERC) [EnLight 277755]
  2. CNPq-Brazil [236693/2012-3]

Ask authors/readers for more resources

Classical molecular dynamics is more and more often coupled to quantum mechanical based techniques as a statistical tool to sample configurations of molecular systems embedded in complex environments. Nonetheless, the classical potentials describing the molecular systems are seldom parametrized to reproduce electronic processes, such as electronic excitations, which are instead very sensitive to the underlining description of the molecular structure. Here, we analyze the challenging case of the peridinin molecule, a natural apocarotenoid responsible for the light-harvesting process in the PCP antenna protein of dinoflagellates. Ground-state structural and vibrational properties, as well as electronic transitions of the pigment are studied by means of quantum-mechanical static and dynamic calculations. Thereafter, classical molecular dynamics simulations are performed with a number of different force-fields, ranging from a popular, general purpose one to refined potentials of increasing level of complexity. From the comparison of classical results with their quantum mechanical counterparts, it appears that, while very poor results are obtained from standard transferrable force-fields, specifically tuned potentials are able to correctly characterize most of the structural and vibrational features of the pigment. Nonetheless, only an advanced parametrization technique is able to give a semiquantitative description of the coupling between vibrations and electronic excitations, thus suggesting that the use of classical MD in combination of QM calculations for the study of photoinduced processes, albeit possible, should be considered with care.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available