4.7 Article

Halogen Bonding Interactions: Revised Benchmarks and a New Assessment of Exchange vs Dispersion

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 14, Issue 1, Pages 180-190

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.7b01078

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Early Career Research Program [DE-SC0016269]
  2. National Science Foundation through the Extreme Science and Engineering Discovery Environment (XSEDE) [TG-ENG160024]

Ask authors/readers for more resources

We present a new analysis of exchange and dispersion effects for calculating halogen-bonding interactions in a wide variety of complex dimers (69 total) within the XB18 and XB51 benchmark sets. Contrary to previous work on these systems, we find that dispersion plays a more significant role than exact exchange in accurately calculating halogen-bonding interaction energies, which are further confirmed by extensive SAPT analyses. In particular, we find that even if the amount of exact exchange is nonempirically tuned to satisfy known DFT constraints, we still observe an overall improvement in predicting dissociation energies when dispersion corrections are applied, in stark contrast to previous studies (Kozuch, S.; Martin, J. M. L. J. Chem. Theory Comput. 2013 , 9 , 1918-1931 ). In addition to these new analyses, we correct several (14) inconsistencies in the XB51 set, which is widely used in the scientific literature for developing and benchmarking various DFT methods. Together, these new analyses and revised benchmarks emphasize the importance of dispersion and provide corrected reference values that are essential for developing/parametrizing new DFT functionals, specifically for complex halogen-bonding interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available