4.7 Article

A dynamic correlation dressed complete active space method: Theory, implementation, and preliminary applictions

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 147, Issue 23, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5017942

Keywords

-

Funding

  1. Max Planck Society
  2. Fonds der Chemischen Industrie

Ask authors/readers for more resources

Complete Active Space SCF (CASSCF) theory may provide poor Oth order descriptions due to the lack of dynamic correlation. The most popular post-CASSCF approaches for recovering dynamic correlation are methods which keep the configuration interaction coefficients fixed at the CASSCF level and use internal contraction. This may result in severe inaccuracies where the wavefunction changes considerably under the influence of dynamic correlation. In this paper, we propose and compare several variants of a straightforward method of the perturb-then-diagonalize type that is aimed at keeping this balance while remaining computationally tractable and numerically stable. The method is loosely based on the theory of intermediate Hamiltonians and has been given the acronym dynamic correlation dressed CAS (DCD-CAS), with the second-order treatment, DCD-CAS(2), being the most practically useful member of the family. The dynamic correlation energy is treated to second order with a 0th order Hamiltonian based on Dyall's Hamiltonian. The method is orbitally invariant with respect to unitary transformations in the occupied, active, and virtual subspaces. It yields the ground-and low-lying excited states at the same time. Detailed numerical evaluations show that DCD-CAS(2) is superior to NEVPT2 for the difficult situations mentioned above while being very close to it when CASSCF provides a good Oth order description. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available