4.7 Article

Decisive test of the ideal behavior of tetra-PEG gels

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 146, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4982253

Keywords

-

Funding

  1. intramural research program of the NICHD/NIH
  2. Ministry of Education, Science, Sports and Culture, Japan [18205025, H1602277, 18068004]
  3. Grants-in-Aid for Scientific Research [16H02277] Funding Source: KAKEN

Ask authors/readers for more resources

The objective of this work is to investigate the thermodynamic and scattering behavior of tetra-poly(ethylene glycol) (PEG) gels. Complementary measurements, including osmotic swelling pressure, elastic modulus, and small angle neutron scattering (SANS), are reported for a series of tetra-PEG gels made from different molecular weight precursor chains at different concentrations. Analysis of the osmotic swelling pressure vs polymer volume fraction curves makes it possible to separate the elastic and mixing contributions of the network free energy. It is shown that in tetra-PEG gels these free energy components are additive. The elastic term varies with the one-third power of the polymer volume fraction and its numerical value is equal to the shear modulus obtained from independent mechanical measurements. The mixing pressure of the cross-linked polymer is slightly smaller than that of the corresponding solution of the uncross-linked polymer of infinite molecular weight but it exhibits similar dependence on the polymer concentration. The observed deviation between the osmotic mixing pressures of the gel and the solution can be attributed to the presence of small amount of structural inhomogeneities frozen-in by the cross-links. SANS reveals that the scattering response of tetra-PEG gel is mainly governed by the thermodynamic concentration fluctuations of the network, i.e., the contribution from static inhomogeneities to the SANS signal is small.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available