4.5 Article

Rhythmic behaviour of marine benthopelagic species and the synchronous dynamics of benthic communities

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.dsr.2014.10.003

Keywords

Activity rhythms; Benthopelagic coupling; Biodiversity; Community temporal changes; Light intensity

Categories

Funding

  1. RITFIM project
  2. Spanish CICYT [CTM2010-16274]

Ask authors/readers for more resources

Light-intensity cycles drive the relentless motion of species in the oceans, and water column migrants may cyclically make contact with the seabed, hence influencing the temporal dynamism of benthic ecosystems. The influence of light on this process remains largely unknown to date. In this study, we focus on the occurrence of day-night changes in benthic communities on the western Mediterranean continental shelf (100 m depth) and slope (400 m depth) as a potential result of a behaviourally sustained benthopelagic coupling. We analysed fluctuations in species abundance based on trawling at hourly intervals over a 4-day period as a proxy of activity rhythms at the seabed. We also measured light in situ to assess how the depth-related decrease of its intensity influences species rhythms and the occurrence of the putative benthopelagic synchronisation. Temporal similarities in the catch patterns for different species were screened by dendrogram analysis. On the continental shelf, species performing diel migrations (i.e., over a 24 h period) that were either vertical (i.e., benthopelagic) or horizontal across depths (i.e., nektobenthic) clustered together separately from the more sedentary endobenthic and epibenthic species. At the same depth, waveform analysis showed a significant diurnal increase in the catch of water column species and benthic species at night. Such coupling was absent on the continental slope, where light intensity was several orders of magnitude lower than that on the shelf. Our data indicate that diel activity rhythms, which are well known for vertical pelagic migrators, are also evident in the benthos. We discuss the role of light as a major evolutionary driver shaping the composition and biodiversity of benthic communities via visual predation. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available