4.7 Article

Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchical Fokker-Planck equation approach

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 147, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4989537

Keywords

-

Funding

  1. Japan Society for the Promotion of Science (JSPS) [A26248005]
  2. JSPS
  3. [16J10099]
  4. Grants-in-Aid for Scientific Research [16J10099, 26248005] Funding Source: KAKEN

Ask authors/readers for more resources

Photoisomerization in a system with multiple electronic states and anharmonic potential surfaces in a dissipative environment is investigated using a rigorous numerical method employing quantum hierarchical Fokker-Planck equations (QHFPEs) for multi-state systems. We have developed a computer code incorporating QHFPE for general-purpose computing on graphics processing units that can treat multi-state systems in phase space with any strength of diabatic coupling of electronic states under non-perturbative and non-Markovian system-bath interactions. This approach facilitates the calculation of both linear and nonlinear spectra. We computed Wigner distributions for excited, ground, and coherent states. We then investigated excited state dynamics involving transitions among these states by analyzing linear absorption and transient absorption processes and multi-dimensional electronic spectra with various values of heat bath parameters. Our results provide predictions for spectroscopic measurements of photoisomerization dynamics. The motion of excitation and ground state wavepackets and their coherence involved in the photoisomerization were observed as the profiles of positive and negative peaks of two-dimensional spectra. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available