4.7 Article

Deep Learning Based Regression and Multiclass Models for Acute Oral Toxicity Prediction with Automatic Chemical Feature Extraction

Journal

JOURNAL OF CHEMICAL INFORMATION AND MODELING
Volume 57, Issue 11, Pages 2672-2685

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jcim.7b00244

Keywords

-

Funding

  1. National Natural Science Foundation of China [21673010, 21633001]
  2. Ministry of Science and Technology of China [2016YFA0502303, 2015CB910302]

Ask authors/readers for more resources

Median lethal death, LD50, is a general indicator of compound acute oral toxicity (AOT). Various in silico methods were developed for AOT prediction to reduce costs and time. In this study, we developed an improved molecular graph encoding convolutional neural networks (MGE-CNN) architecture to construct three types of high-quality AOT models: regression model (deepAOT-R), multiclassification model (deepAOT-C), and multitask model (deepAOT-CR). These predictive models highly outperformed previously reported models. For the two external data sets containing 1673 (test set I) and 375 (test set II) compounds, the R-2 and mean absolute errors (MAEs) of deepAOT-R on the test set I were 0.864 and 0.195, and the prediction accuracies of deepAOT-C were 95.5% and 96.3% on test sets I and II, respectively. The two external prediction accuracies of deepAOT-CR are 95.0% and 94.1%, while the R-2 and MAE are 0.861 and 0.204 for test set I, respectively. We then performed forward and backward exploration of deepAOT models for deep fingerprints, which could support shallow machine learning methods more efficiently than traditional fingerprints or descriptors, We further performed automatic feature learning, a key essence of deep learning, to map the corresponding activation values into fragment space and derive AOT-related chemical substructures by reverse mining of the features. Our deep learning architecture for AOT is generally applicable in predicting and exploring other toxicity or property end points of chemical compounds. The two deepAOT models are freely available at http://repharma.pku.edu.cn/DLAOT/DLAOThome.php or http://w-ww.pkumdl.cn/DLAOT/ DLAOThome.php.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available