4.6 Article

Reverse quantum annealing of the p-spin model with relaxation

Journal

PHYSICAL REVIEW A
Volume 101, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.101.022331

Keywords

-

Funding

  1. CINECA Award under the ISCRA initiative (Project IscraC_QA-MCWF)
  2. Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via the US Army Research Office [W911NF-17-C-0050]
  3. University of Southern California Center for High-Performance Computing and Communications

Ask authors/readers for more resources

In reverse quantum annealing, the initial state is an eigenstate of the final problem Hamiltonian and the transverse field is cycled rather than strictly decreased as in standard (forward) quantum annealing. We present a numerical study of the reverse quantum annealing protocol applied to the p-spin model (p = 3), including pausing, in an open-system setting accounting for dephasing in the energy eigenbasis, which results in thermal relaxation. We consider both independent and collective dephasing and demonstrate that in both cases the open-system dynamics substantially enhances the performance of reverse annealing. Namely, including dephasing overcomes the failure of purely closed-system reverse annealing to converge to the ground state of the p-spin model. We demonstrate that pausing further improves the success probability. The collective dephasing model leads to somewhat better performance than independent dephasing. The protocol we consider corresponds closely to the one implemented in the current generation of commercial quantum annealers, and our results help to explain why recent experiments demonstrated enhanced success probabilities under reverse annealing and pausing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available