4.6 Review

Principles, mechanisms, and application of carbon quantum dots in sensors: a review

Journal

ANALYTICAL METHODS
Volume 12, Issue 10, Pages 1266-1287

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ay02696g

Keywords

-

Funding

  1. Shahrood University of Technology
  2. Iran Nanotechnology Initiative Council

Ask authors/readers for more resources

Carbon quantum dots (CQDs) as an emerging class of quantum dots (QDs) with advantages such as good photoluminescence (PL) properties, easy synthesis routes, economical synthesis, cheap starting materials, water-solubility, low levels of toxicity, chemical stability, and easy functionalization have received great attention during recent years. CQDs have been used in versatile sensor applications. CQD sensors could be ultimately sensitive, and the limit of detection (LOD) for these sensors can reach the nanomolar, picomolar or even femtomolar ranges. CQD-based sensors and biosensors work with different mechanisms including fluorescence quenching, static quenching, dynamic quenching, energy transfer, inner filter effect (IFE), photo-induced electron transfer (PET), and fluorescence resonance energy transfer (FRET). CQD-based sensors and biosensors have been applied for the detection of different species such as metal ions, acids, proteins, biothiols, polypeptides, DNA and miRNA, water pollutants, hematin, drugs, vitamins, and other chemicals. It seems that CQD-based sensors and biosensors are promising candidates for high performance and yet accurate sensors in different areas. In this review, CQDs are introduced, and the synthesis methods and optical properties of CQDs are discussed. Different types of CQD-based sensors and biosensors and their working mechanisms are clarified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available